Glucagon-like peptide-1 induces a cAMP-dependent increase of [Na+]i associated with insulin secretion in pancreatic beta-cells.
نویسندگان
چکیده
Glucagon-like peptide-1 (GLP-1) elevates the intracellular free calcium concentration ([Ca2+]i) and insulin secretion in a Na+-dependent manner. To investigate a possible role of Na ion in the action of GLP-1 on pancreatic islet cells, we measured the glucose-and GLP-1-induced intracellular Na+ concentration ([Na+]i), [Ca2+]i, and insulin secretion in hamster islet cells in various concentrations of Na+. The [Na+]i and [Ca2+]i were monitored in islet cells loaded with sodium-binding benzofuran isophthalate and fura 2, respectively. In the presence of 135 mM Na+ and 8 mM glucose, GLP-1 (10 nM) strongly increased the [Na+]i, [Ca2+]i, and insulin secretion. In the presence of 13.5 mM Na+, both glucose and GLP-1 increased neither the [Na+]i nor the [Ca2+]i. In a Na+-free medium, GLP-1 and glucose did not increase the [Na+]i. SQ-22536, an inhibitor of adenylate cyclase, and H-89, an inhibitor of PKA, incompletely inhibited the response. In the presence of both 8 mM glucose and H-89, 8-pCPT-2'-O-Me-cAMP, a PKA-independent cAMP analog, increased the insulin secretion and the [Na+]i. Therefore, we conclude that GLP-1 increases the cAMP level via activation of adenylate cyclase, which augments the membrane Na+ permeability through PKA-dependent and PKA-independent mechanisms, thereby increasing the [Ca2+]i and promoting insulin secretion from hamster islet cells.
منابع مشابه
Glucagon-like peptide-1 induces a cAMP-dependent increase of [Na ]i associated with insulin secretion in pancreatic -cells
Miura, Yoshikazu, and Hisao Matsui. Glucagon-like peptide-1 induces a cAMP-dependent increase of [Na ]i associated with insulin secretion in pancreatic islet -cells. Am J Physiol Endocrinol Metab 285: E1001–E1009, 2003; 10.1152/ajpendo.00005.2003.—Glucagon-like peptide-1 (GLP-1) elevates the intracellular free calcium concentration ([Ca2 ]i) and insulin secretion in a Na -dependent manner. To i...
متن کاملGlucagon stimulates expression of the inducible cAMP early repressor and suppresses insulin gene expression in pancreatic beta-cells.
The hormone glucagon is secreted by the alpha-cells of the endocrine pancreas (islets of Langerhans) during fasting and is essential for the maintenance of blood glucose levels by stimulation of hepatic glucose output. Excessive production and secretion of glucagon by the alpha-cells of the islets is a common accompaniment to diabetes. The resulting hyperglucagonemia stimulates hepatic glucose ...
متن کاملRegulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic beta-cell: a computational approach.
In this report we describe a mathematical model for the regulation of cAMP dynamics in pancreatic beta-cells. Incretin hormones such as glucagon-like peptide 1 (GLP-1) increase cAMP and augment insulin secretion in pancreatic beta-cells. Imaging experiments performed in MIN6 insulinoma cells expressing a genetically encoded cAMP biosensor and loaded with fura-2, a calcium indicator, showed that...
متن کاملImportant role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta-cell exocytosis and release of insulin.
Cyclic AMP potentiates glucose-stimulated insulin release and mediates the stimulatory effects of hormones such as glucagon-like peptide 1 (GLP-1) on pancreatic beta-cells. By inhibition of cAMP-degrading phosphodiesterase (PDE) and, in particular, selective inhibition of PDE3 activity, stimulatory effects on insulin secretion have been observed. Molecular and functional information on beta-cel...
متن کاملGlucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K(+) currents in beta-cells: a possible glucose-dependent insulinotropic mechanism.
Glucagon-like peptide-1 (GLP-1) acts through its G-protein-coupled receptor to enhance glucose-stimulated insulin secretion from pancreatic beta-cells. This is believed to result from modulation of at least two ion channels: ATP-sensitive K(+) (K(ATP)) channels and voltage-dependent Ca(2+) channels. Here, we report that GLP-1 receptor signaling also regulates the activity of beta-cell voltage-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 285 5 شماره
صفحات -
تاریخ انتشار 2003